Circadian rhythms in gene transcription imparted by chromosome compaction in the cyanobacterium Synechococcus elongatus.

نویسندگان

  • Rachelle M Smith
  • Stanly B Williams
چکیده

In the cyanobacterium Synechococcus elongatus (PCC 7942) the kai genes A, B, and C and the sasA gene encode the functional protein core of the timing mechanism essential for circadian clock regulation of global gene expression. The Kai proteins comprise the central timing mechanism, and the sensor kinase SasA is a primary transducer of temporal information. We demonstrate that the circadian clock also regulates a chromosome compaction rhythm. This chromosome compaction rhythm is both circadian clock-controlled and kai-dependent. Although sasA is required for global gene expression rhythmicity, it is not required for these chromosome compaction rhythms. We also demonstrate direct control by the Kai proteins on the rate at which the SasA protein autophosphorylates. Thus, to generate and maintain circadian rhythms in gene expression, the Kai proteins keep relative time, communicate temporal information to SasA, and may control access to promoter elements by imparting rhythmic chromosome compaction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CikA, a bacteriophytochrome that resets the cyanobacterial circadian clock.

The circadian oscillator of the cyanobacterium Synechococcus elongatus, like those in eukaryotes, is entrained by environmental cues. Inactivation of the gene cikA (circadian input kinase) shortens the circadian period of gene expression rhythms in S. elongatus by approximately 2 hours, changes the phasing of a subset of rhythms, and nearly abolishes resetting of phase by a pulse of darkness. T...

متن کامل

Circadian rhythms of superhelical status of DNA in cyanobacteria.

The cyanobacterium Synechococcus elongatus expresses robust circadian (daily) rhythms under the control of the KaiABC-based core clockwork. Unlike eukaryotic circadian systems characterized thus far, the cyanobacterial clockwork modulates gene expression patterns globally and specific clock gene promoters are not necessary in mediating the circadian feedback loop. The oscilloid model postulates...

متن کامل

Ultrastructure of compacted DNA in cyanobacteria by high-voltage cryo-electron tomography

Some cyanobacteria exhibit compaction of DNA in synchrony with their circadian rhythms accompanying cell division. Since the structure is transient, it has not yet been described in detail. Here, we successfully visualize the ultrastructure of compacted DNA in the cyanobacterium Synechococcus elongatus PCC 7942 under rigorous synchronized cultivation by means of high-voltage cryo-electron tomog...

متن کامل

Dual KaiC-based oscillations constitute the circadian system of cyanobacteria.

In the cyanobacterium Synechococcus elongatus PCC 7942, the KaiA, KaiB, and KaiC proteins are essential for the generation of circadian rhythms. Both in vivo and in vitro, phosphorylation of KaiC is regulated positively by KaiA and negatively by KaiB and shows circadian rhythmicity. The autonomous circadian cycling of KaiC phosphorylation is thought to be the basic pacemaker of the circadian cl...

متن کامل

Effect of salinity on some physiological and biochemical responses in the cyanobacterium Synechococcus elongatus

In this study, some physiological and biochemical responses of Synechococcus elongatus to salt stress were investigated. The cyanobactrium was grown in BG-11 medium under different concentrations of NaCl (0, 0.5, 1 M). The results indicated that the growth of S. elongatus was significantly inhibited under salt stress on days 5, 9 and 12. Protein content increased in S. elongatus on day 12 in pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 22  شماره 

صفحات  -

تاریخ انتشار 2006